
www.manaraa.com

Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

5-3-2008

Using Web bugs and honeytokens to investigate the source of Using Web bugs and honeytokens to investigate the source of

phishing attacks phishing attacks

Craig Michael McRae

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
McRae, Craig Michael, "Using Web bugs and honeytokens to investigate the source of phishing attacks"
(2008). Theses and Dissertations. 4918.
https://scholarsjunction.msstate.edu/td/4918

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4918&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/4918?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4918&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

www.manaraa.com

USING WEB BUGS AND HONEYTOKENS TO INVESTIGATE

THE SOURCE OF PHISHING ATTACKS

By

Craig Michael McRae

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

May 2008

www.manaraa.com

Copyright by

Craig Michael McRae

2008

www.manaraa.com

USING WEB BUGS AND HONEYTOKENS TO INVESTIGATE

THE SOURCE OF PHISHING ATTACKS

By

Craig Michael McRae

Approved:

Rayford B. Vaughn
Billie J. Ball Professor of
Computer Science and Engineering
(Major Professor)

David A. Dampier
Associate Professor of Computer
Science and Engineering
(Committee Member)

Mahalingham Ramkumar
Assistant Professor of Computer
Science and Engineering
(Committee Member)

Edward B. Allen
Associate Professor of Computer
Science and Engineering,
and Graduate Coordinator

W. Glenn Steele
Dean
Bagley College of Engineering

www.manaraa.com

Name: Craig Michael McRae

Date of Degree: May 2, 2008

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Rayford B. Vaughn

Title of Study: USING WEB BUGS AND HONEYTOKENS TO INVESTIGATE THE
SOURCE OF PHISHING ATTACKS

Pages in Study: 71

Candidate for Degree of Master of Science

Phishing is the use of social engineering and electronic communications such as emails

to try and illicit sensitive information such as usernames, passwords, and financial infor-

mation. This form of identity theft has become a rampant problem in today’s society.

Phishing attacks have cost financial institutions millions of dollars per year and continue

to do so.

Today’s defense against phishing attacks primarily consists of trying to take down the

phishing web site as quickly as possible before it can claim too many victims. This thesis

demonstrates that is possible to track down a phisher to the IP address of the phisher’s

workstation rather than innocent machines used as intermediaries. By using web bugs and

honeytokens on the fake web site forms the phisher presents, one can log accesses to the

web bugs by the phisher when the attacker views the results of the forms.

www.manaraa.com

Key words: anti-phishing, phishing, honeytokens, investigation, tracking, web bugs

www.manaraa.com

ACKNOWLEDGMENTS

I thank my committee for their comments on this thesis, and I thank Dr. Rayford

B. Vaughn for directing this research, and also Robert Wesley McGrew for assisting and

advising in this research.

I would also like to thank Dr. Edward Allen for the LATEX template used in creating

this document.

Also I would like to thank all of the CSE faculty, graduate students, and all others for

their help in providing me with phishing e-mails for this research.

ii

www.manaraa.com

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

CHAPTER

1. INTRODUCTION . 1
1.1 Introduction to Phishing and Social Engineering 2
1.2 Introduction to Web Bugs . 5
1.3 Introduction to Honeytokens . 6
1.4 Hypothesis and Methodology . 7

2. CURRENT EFFORTS . 9
2.1 Defenses Against Phishing . 9
2.2 Uses of Honeytokens and Web Bugs 11

3. PRELIMINARY EXPERIMENT . 14
3.1 Initial Experiment . 14

3.1.1 Example Case . 15
3.1.2 Real World Cases . 16

3.2 Technique Advantages and Disandvantages 20
3.3 Experiment Conclusions . 21

4. FINAL EXPERIMENT . 22
4.1 Experiment Setup . 22
4.2 Results . 26

5. CONCLUSIONS AND FUTURE WORK 30
5.1 Conclusions . 30
5.2 Future Research . 31

REFERENCES . 33

APPENDIX

A. PRELIMINARY EXPERIMENT PERL SOURCE CODE 35

iii

www.manaraa.com

A.1 automate.pl . 36
A.2 imagesetup.pl . 41

B. PRELIMINARY EXPERIMENT HTML/PHP SOURCE CODE 43
B.1 phishFormGet.php . 44
B.2 phishFormPost.php . 46
B.3 showDB.php . 47

C. ATTEMPTED AUTOMATION PYTHON SOURCE CODE 48
C.1 automateDQ.py . 49
C.2 automateSQ.py . 55

D. FINAL EXPERIMENT PYTHON SOURCE CODE 61
D.1 imagesetupDQ.py . 62
D.2 imagesetupSQ.py . 64

E. INVESTIGATION DATA . 66

iv

www.manaraa.com

LIST OF TABLES

4.1 Countries with Compromised Web Servers 24

4.2 Companies that were Phished . 25

4.3 Scripting Languages that were used . 25

4.4 Countries of IPs Used by Phishers . 28

4.5 Browsers Used by Phishers . 28

4.6 Operating Systems used by Phishers . 29

E.1 Phishing Sites Investigated . 67

E.2 Phishing Sites Data . 68

E.3 Referral Data . 69

E.4 Phisher’s Data (1) . 70

E.5 Phisher’s Data (2) . 71

v

www.manaraa.com

CHAPTER 1

INTRODUCTION

Phishing, or password harvesting fishing to some [2], is the use of social engineering

and spam e-mails to try to elicit sensitive information, such as usernames, passwords,

and financial information. This form of identity theft is a major problem in information

security today. Phishing attacks cost financial institutions millions of dollars per year. In a

one year period that ended in April of 2004, there were an estimated 1.8 million phishing

attacks that generated $1.2 billion USD in losses. When people are victimized by phishing

attacks, their bank or other financial institution typically reimburses them for damages just

like any other form of identity theft. Even though this institution has done nothing wrong,

they are the ones that ultimately pay the price [3].

Financial institutions are also victimized in another way that is often overlooked. When

people become victims of phishing attacks or become aware of the threat of phishing at-

tacks, the financial institution loses the ability to communicate with their customer base

through email. Their customers no longer trust emails that come from those institutions

and usually assume it to be a phishing email [4]. Customers also tend to blame the legiti-

mate institution for phishing attacks.

It is becoming increasingly important to try to protect against phishing attacks. These

phishing attacks need to be tracked down to their source, so that attackers can be identified

1

www.manaraa.com

and stopped. This thesis aims to introduce a new way of investigating phishing attacks

to the actual IP address of the phisher’s machine, rather than simply the IP address of

one of the computers that the attacker has compromised for use in attacks. The set of

compromised machines that an attacker uses is known as a botnet. The experiment is

explained in section 3.1.

1.1 Introduction to Phishing and Social Engineering

The Anti-Phishing Working Group defines phishing as attacks that “use both social

engineering and technical subterfuge to steal consumers’ personal identity data and finan-

cial account credentials” [4]. The first known instance occurred in the mid-1990s when

phishing schemes obtained America Online user names and passwords [12].

Phishing typically involves an email posing as a legitimate company, usually a finan-

cial institution. Graphical elements, such as company logos identical to the ones on the

institution’s web site, increase the apparent legitimacy of the email. The user is presented

with a message, that purports to be from the legitimate company, that calls the user to

some action. For example, this may be a request for updated information, verification of

identity, or a notification something has changed. By combining the problem with the

account, the phisher preys on the victim’s emotions affecting their ability to process what

is happening. When the user accesses the link, it then takes them to a website that looks

authentic since the attacker again uses the same graphics and layout as the legitimate web

site but is designed to elicit personal information from the user which is sent to the phisher.

2

www.manaraa.com

Attackers have long been trying to obtain secret information from others. Originally

this was done solely through the process of “social engineering”. Kevin Mitnick de-

fines social engineering as “getting people to do things they wouldn’t ordinarily do for

a stranger” [8]. A social engineer tries to deceive a trusted user of a system to reveal se-

cret information or tricks the social engineer would not otherwise know. He describes how

the individual is the weakest link of security. Social engineering attacks prey on users who

are typically ignorant about good security practices. This is the one attack that technology

cannot prevent [8].

To demonstrate how easy this attack can happen, Mitnick tells the story of Stanley

Mark Rifkin and his attack on Security Pacific National Bank. In 1978, Rifkin walked

into the bank’s authorization-personnel-only wire-transfer room. He was working for a

company contracted to develop a backup system for the room’s data. This gave him access

to the transfer procedures. This allowed him to learn that the authorized people received a

daily code every morning. These people did not bother memorizing the code. They instead

posted it inside the room. Rifkin was then able to call the room from a pay phone posing

as Mike Hansen, a member of the bank’s International Department. After giving an office

number and the code he was able to give instructions to wire ten million two hundred

thousand dollars to a bank account he had already set up. The wire room then asked for

the inter-office settlement number. Rifkin did not anticipate that question and therefore

did not have the answer. He simply stated that he would check the number and call right

back. Rifkin then changed hats and called the International Department posing to be the

3

www.manaraa.com

wire room and asked for the number. He then called the wire room back and finished the

transaction [8].

Today’s social engineer does not require direct communication with their victim. Thanks

to the widespread use of the internet, social engineering is easier than ever before. A so-

cial engineer can victimize anyone from anywhere. Also, in Mitnick’s story, Rifkin had to

keep his nerves and wits about him in order to not give away the scam. With the Internet,

the social engineer does not have direct contact with his victim. The social engineer does

not have to worry about the inflection in his voice or any other physiological clues giving

away the scam. The interpersonal skills used in attacks such as those described by Mitnick

are not necessary to execute phishing attacks on the Internet.

Dr. Max Kilger believes that the motives of computer attackers can be explained with

the acronym MEECES. This stands for Money, Ego, Entertainment, Cause, Entrance to

a social group, and Status [9]. The CEO of Cyota, Naftali Bennett, believes that phish-

ing has become popular because as it stands right now, there is little risk but potentially

great rewards [3]. The risk is low due to the lack of effective methods for tracking down

phishing attacks to their source and the low probability of being prosecuted. Most phish-

ing investigative techniques can only track the attack to the server where the phishing site

was hosted or to a botnet used to relay the emails. The server hosting the site is usually a

compromised server that has no direct connection to the attacker.

4

www.manaraa.com

1.2 Introduction to Web Bugs

A web bug can be defined as any HTML element that is used to, at least in part, secretly

gather information about users who navigate to a site that contains that element. Usually

these come in the form of images. For that reason, they are sometimes referred to as pixel

tags and clear GIFs [6]. These images could be as large as the web site’s logo or as small

as one square pixel.

David Martin, et al. mentions several different things that web bugs can do. A few of

these include:

• Count web site hits

• Send demographic data to a internet marketing company such as gender, age, and
zip code with the help of a cookie

• Track web browsing habits of a user

• Report browser information back to a web site [6]

Web bugs can accomplish some of this by explicitly giving an image a unique file name

for that particular web user. An example of a web bug in use can be seen in emails. This

technique has been used by spammers in the past and by a company sending out legitimate

promotional emails as well. A 1x1 pixel white image can be created with a particular email

address embedded into the filename such as joesmith example com.gif. The spammer

will then embed this image into that email to joesmith@example.com. When Joe Smith

views his email, the small white image will go unnoticed. The image is loaded from

the spammer’s web server, and will create an entry on the server log for the filename

joesmith example com.gif. The spammer now knows that Joe Smith received his email

and will continue to use that email address in future spam attacks. Some web-based email
5

www.manaraa.com

providers and vendors of desktop email software have disabled the retrieval of images in

incoming emails for this reason.

1.3 Introduction to Honeytokens

Lance Spitzner, the leader of the Honeynet Project, has defined the term honeytoken

as “a digital or information system resource whose value lies in the unauthorized use of

that resource” [10]. Honeytokens can be any digital data. They can consist of documents,

images, or even data such as a phony login/password combination. A honeytoken may be

any data on a system for which accesses can be logged, and whose access automatically

implies unauthorized activity.

While the term ‘honeytoken’ is new, the concept is not. The term ‘honeytoken’ was

created by Augusto Paes de Barros on February 21, 2003. He used it in a email that went to

a list of security professionals [11]. Spitzner further mentions that some map makers insert

phony roads or cities on their maps for proof when competitors sell copies of their maps.

Spitzner gives other hypothetical examples of honeytokens in use. One such example

shows how a honeytoken could possibly help in database security. Hospitals could create

a bogus medical record for John F. Kennedy and then track the access to that tuple of the

database. Anyone who views that record is in violation of regulations and rules that are

meant to protect the privacy of patient data. This is because stored procedures and other

layers of database access can be designed to avoid accessing honeytokens. In this situation,

access to a honeytoken implies that the database is not being accessed through approved

6

www.manaraa.com

means. Also, financial institutions can create bogus accounts. If one tries to access those

accounts, then the institution’s system has been compromised [10].

The key to using honeytokens is to give the token unique identifiable elements to guar-

antee that the only access to that token is by unauthorized parties. If the token could be

viewed in normal interaction with a system, the token’s tracking ability is compromised.

Honeytokens’ greatest advantages lie in their flexibility and their minimal cost.

1.4 Hypothesis and Methodology

This research combines the concepts of web bugs and honeytokens and uses them

against phishing attacks. Web bugs are sent to phishers via the web forms used in at-

tacks. Since these web bugs are named specific to each phishing attack and should not

be accessed in normal web browsing, then they also function as honeytokens. These web

bugs should only be accessed by the phisher and no one else. This leads to the following

hypothesis:

The combination of HTML web bugs and honeytokens can be used against
phishers to track the phishing attacks to their source thus being able to help
stop phishing where the problem starts.

This research is not simply testing a phishing investigation technique, it looks at phish-

ing attacks as a whole. This will lead to new discoveries beyond the success of the phishing

investigation technique. Other goals of this research are to answer the following questions:

1. What methods and motives of phishing attacks can be discovered?

2. What other vulnerabilities are available to use against phishing attacks?

3. Can new phishing defenses be uncovered?

7

www.manaraa.com

In addition to investigating phishing attacks, this research aims to develop a profile for

phishing attacks similar to what honeypots have done for general network security. By

walking through their entire attack and investigating where the results are being viewed,

lots of information can be discovered about a phisher. This could help in developing a

profile on typical phishing attacks.

This investigative method does has its shortcomings which will be discussed later. This

is why discovering other vulnerabilities in phishing attacks can lead to a much more ef-

fective phishing investigation strategy. This is based on the totality of computer security.

When a person only secures one aspect of their system, then an attacker simply uses an-

other method. If you only attack one of a phishing scheme’s vulnerabilities, then they will

eventually fix the vulnerability, reducing the effectiveness of the attack.

This research presents a new investigative technique, rather than a defense against

phishing attacks. However, by exploring the totality of phishing attacks, profiling the

attackers, and exploring the vulnerabilities of phishing attacks, it is possible that other

methods of phishing investigations and defenses could be developed.

8

www.manaraa.com

CHAPTER 2

CURRENT EFFORTS

2.1 Defenses Against Phishing

There are currently numerous approaches to protecting users from phishing schemes.

As previously mentioned, these approaches do not get to the root of the problem. These

methods do not track down the phishing schemes to the individual or group running the

scam.

The simplest of these methods is to attempt to take down phishing sites quickly. Web

crawlers similar to those used for search engines can also be used to find phishing sites.

The information is then passed on to the appropriate Internet Service Provider (ISP) in

order to take the site down. This method is flawed because of the difficulty in finding these

sites quickly. Also, some websites hosted in foreign countries do not have similar laws

that can justify removing the site.

One defense is to flood a phisher’s database with false information. This flood of infor-

mation is not intended on being a denial of service (DOS) attack. This flood is designed to

make the phisher unable to distinguish correct data from incorrect data in their database.

This makes the user’s database virtually unusable. This method does nothing to prevent

9

www.manaraa.com

phishing attacks. It simply tries to minimize the ability to carry through with the theft of

financial data [3].

Another defense is to provide a two-phase authentication process for users in e-mail

and on the corporate website. An example of this would include the normal username/password

combination combined with a authenticating image and/or phrase chosen by the user. Any

time the corporation sends out an e-mail to a user, they would include this personal phrase

and image in the e-mail. Since a phisher would not know this information, then the e-mail

is validated. By the same token, including the image and phrase on the corporation web-

site as part of the login process would also validate the website to the user as well. This

can help prevent phishing attacks by providing authentication of communication between

a user and a corporation [3].

One of the few current approaches that can possibly target the root of the problem is

to watch corporation’s web logs for users downloading their images. Creators of phishing

websites usually use the actual images from the corporate website to make the phishing

website more believable. If users are downloading images to their personal computer, then

their IP address will show up in the server logs. The Corillian Fraud Detection System

(CFDS) is a commercial server that looks for such a behavior in web logs. It then inves-

tigates further to find the phishing site that is illegally using those images. Corillian then

notifies the administrator of the compromised server and the authorities [3].

Internet browser creators are trying to help out as well. This usually involves compar-

ing the address of a web site to a list of ‘blacklisted’ websites. This blacklist can come

from the browser’s creators, users, and other sources. The sites may also have a list of

10

www.manaraa.com

‘whitelist’ websites as well. If a site does not apply to either list then some security mea-

sures may be put in place such as disabling mobile code like ActiveX and JavaScript [3].

Internet Explorer 7.2 disallows mobile code to disable the address bar. Phishers often do

this to hide the actual location of the site. They can even include a fake address bar show-

ing a fake URL to further fool the user. This version of Internet Explorer also includes a

phishing filter which allows users to report a phishing site. This reporting eventually can

lead to the site becoming blacklisted and all users of IE are notified at any future visits to

the site. Users are notified of both confirmed and suspicious phishing sites [7].

2.2 Uses of Honeytokens and Web Bugs

Both honeytokens and web bugs are still relatively new ideas. The full potentials of

honeytokens and web bugs have yet to be realized. Especially in the case of honeytokens,

most ideas are still in the hypothetical stage.

One early example of the use of honeytokens occurred in 1986. Clifford Stoll, work-

ing as a programmer for Lawrence Berkeley National Laboratory, placed phony records

for a fictitious organization named Strategic Defense Initiative Network deep into the lab’s

server. After the files were downloaded by intruders, Stoll received a letter about the com-

pany. With the help of federal investigators, Stoll traced the intruders to East German and

Soviet intelligence agencies. ForeScout Technologies actually uses honeytokens to help

as an intrusion detection system (IDS). Their software detects ‘surreptitious reconnais-

sance’, i.e. port scans. Then the software announces a false message of vulnerability to

11

www.manaraa.com

the intruder. If the intruder follows up with an attack, then the connection is terminated

[11].

ForeScout Technologies’ use of honeytokens demonstrates another advantage. When

used with an IDS, it can help eliminate false positives. When an IDS is designed to trigger

on honeytokens as opposed to normal rules, then false positives can be minimized, and

more intrusions can be detected.

As previously mentioned web bugs can be used for primitive e-mail tracking. This

technique could be applied to track down the source of the ‘Nigerian Scam’, or ’419 scam’,

emails that try to convince users to supply their bank account information in order to

receive a large charitable donation. These emails want you to reply to the e-mail to swap

personal information. A web bug picture could be simply added to the reply in order to try

and investigate the source.

Web bugs are not just limited to web pages and e-mail. Web bugs can also be hidden

in Microsoft Word documents. Microsoft Word allows a document to link to an image on

a remote server. The document only stores the link to the image and not the image itself;

therefore, every time the document is opened, the image has to be loaded from the remote

server. Harding, et al. lists a few instances where web bugs would be useful in Microsoft

Word documents:

• Discovering and keeping up with any possible leaks of confidential documents

• Keeping up with any possible copyright infringement of newsletters and reports

• Keeping up with the distribution of a press release

• Tracking quoted text that is copied and pasted from one word document to another.

12

www.manaraa.com

Harding adds that web bugs can also be used in Excel 2000 and PowerPoint 2000 files

[5].

The biggest security risk with web bugs is when they are combined with cookies to

obtain information about a user. These two tools combined are a threat to internet privacy

and anonymity. This threat is realized when cookies from two or more sites belonging to

the same ad agency are stored on the same computer. These sites each contain web bugs

that point back to the ad agency. When a user visits one of those sites, the web bug will be

loaded and information will be sent back to the host server. Included in this information

would be a previously set cookie value from the user’s hard drive. When the user then

goes to another site, the ad agency can cross-reference the visits to the same user based on

the cookie’s values that are sent with the web bugs. The ad agency that can begin to gather

information on the user’s browsing habits within their ad network [5].

The use of web bugs by websites is much more prevalent than most people realize.

David Martin, et al. did a study on web bugs. In their study they analyzed two lists

of websites. One list contained 84 web sites that were marked as the most popular in

January 2000. The second list contained a random list of 298 consumer-oriented web

sites. The study used Bugnosis to analyze an average of approximately 90 pages from

each website. This study found 58% of ‘the popular websites contained web bugs and

36% of the consumer-oriented websites [6].

13

www.manaraa.com

CHAPTER 3

PRELIMINARY EXPERIMENT

3.1 Initial Experiment

Using web bugs and honeytokens, this research attempts to describe a method for

tracking down phishing attacks to the source. This involves filling out the phishers’ web

forms with HTML image tags of one square pixel images and HTML web page links. Both

the image files and the web page links were hosted on a machine in a laboratory environ-

ment with an unrestricted internet connection. This machine was on its own dedicated

subnet separate from the rest of the campus network. In the event that a phisher decides

to attack the research system, this protects the departmental and campus network from

being compromised. The images in this project can be considered web bugs since they

are named uniquely for each phishing e-mail and can be used to gather information about

the individual or group that views the data collected from the phishing scheme. Both the

image files and the HTML files can also be viewed as honeytokens since they are pieces of

data that are unlikely to be accessed by users other than those involved in specific phishing

schemes.

The image and HTML files are both named using a timestamp in order to give them a

unique name. That filename is stored, along with the URL of the attack, to associate the

14

www.manaraa.com

files with each particular phishing attack. As previously mentioned, if the phisher views

the results in an HTML enabled environment that does not filter or block third party images

from being loaded, such as many webmail applications, browsers, and applications such

as Outlook, the images will be retrieved from the server unknowingly by the attacker. The

phisher will likely know that something is not right with the data due to the links being

displayed and the lack of personal information. By the time the phisher realizes this, the

image is already loaded. Any further investigation by the phisher will likely result in more

information being logged about them. If the phisher’s client software loads the images

or the phisher accesses the hyperlinks, a referral will be generated in the web logs on the

tracking server. Some of the information included in the log file is:

• The IP address of the actual box where the results were viewed

• The webpage where the phisher viewed the results including webmail accounts like
GMail, Yahoo Mail, or Hotmail

• The browser type that was used to view these results

• A guess at the operating system the phisher is working from

An analysis of an actual experimental referral that was generated is shown in Section

3.3.

3.1.1 Example Case

In order to test this concept at tracking phishing schemes, two simple webpage forms

were created for testing the process. One form to test the ‘get’ form request, and the second

to test the ’post’ form request. Both of these files are shown in Appendix B. Most phishing

15

www.manaraa.com

attacks begin with a login page, so the two forms were created as login forms for testing.

The form was then fed HTML tags similar to the following:

• <a href=‘‘http://192.168.0.0/html/
2005_Nov_28_11_20_05.html’’>myspam@hotmail.com

• <img src=‘‘http://192.168.0.0/images/
2005_Nov_28_11_20_05.gif’’>

Lastly, a web page was created that displayed the results of the fictitious phishing site.

This file is shown in Appendix B as well. This web page was opened up in a web browser

that allowed the viewing of third-party images. To guarantee that a referral had been made,

some of the web page links were accessed as well. At this point the web server log files on

the experimental machine were checked, and it was confirmed that the referral was made

from the phishing investigation.

3.1.2 Real World Cases

E-mails were sent to all the faculty and grad students in the CSE department asking

them to submit phishing e-mails they had received for use in the experiment. Other indi-

viduals that were capable of identifying phishing schemes were asked to do the same.

Originally the plan was to automate the process with a single Perl script or series

of scripts. The scripts used the Unix utility wget to automate the form submissions. A

problem arose when it was noticed the script was not able to handle redirect pages in the

case of nested forms. Due to the limited time available for this test case, it was decided to

continue doing the form submission manually to achieve results and to prove tracking was

possible.

16

www.manaraa.com

The Perl script used to automate this process was modified to simply take the input of

a particular web site URL, generate the appropriate image and HTML files, and store the

web site URL with the image and HTML filenames into a comma-separated values (csv)

file. The HTML values could then be copied and pasted into the individual fields of the

phisher’s forms. If the entire HTML tag could not fit into a form field, then the values

were simply created with fictitious names, or in the case of number fields such as credit

card numbers, the appropriate number of 5’s were input into the field. This problem can

be bypassed once the process is automated. An automation script could bypass the HTML

form restrictions and any possible JavaScript-based error checking. Another alternative

solution is to use a proxy server designed for web application security testing, such as

BurpSuite [1]. This will allow the outgoing data stream to be filtered in order to allow

the HTML tags to be entered into the outgoing data. After submitting form data, the

packet can be changed to include the HTML tags. This would also bypass the HTML

form restrictions and JavaScript-based error checking.

During the week of November 11 through November 18, eleven phishing sites were

investigated and two referrals were found. Some of the other nine attacks may not have

generated referrals since the only fields that would accept the full HTML tag were the

login fields. If the phisher was not worried about the login parameters and only looked at

the financial data from later forms, then the referral would not occur. In some cases, none

of the fields would accept the full HTML tag. This problem could again be fixed by script

automation or by the use of a proxy server. A sanitized version of one of the referrals that

was generated during this week is shown below:

17

www.manaraa.com

82.79.137.22 - - [11/Nov/2005:12:08:12 -0600] ‘‘GET
/images/2005_Nov_12_11_52_53.gif/ HTTP/1.1’’ 404 309
‘‘http://mail.google.com/mail/h/15zatsmc8x2ql/
?th=1078083bcd28d7d6&v=c’’ ‘‘Mozilla/4.0
(compatible; MSIE 6.0; Windows 98) Opera 7.50 [en]’’

We can infer the following from this referral:

• The results of the attack were e-mailed to the attacker via a GMail e-mail account.
Attempts to reproduce the GMail session by entering the URL into a browser were
unsuccessful. The user would have had to allow the images to be loaded since GMail
does not load images by default.

• Using the IP address, a whois query can be executed, possibly revealing informa-
tion about the attacker’s physical location, or another machine or proxy under the
attacker’s control.

• The Opera web browser was used by the attacker to view his information.

Actually tracking the source of the phishing scheme occurs with a whois query of the

IP address given in the referral. Using the IP address from the previous referral returned

the following:

inetnum: 82.79.137.0 - 82.79.137.63
netname: RO-BZ-METRONETWORK
descr: Metronetwork SRL
country: RO
admin-c: IS1460-RIPE
tech-c: IS1460-RIPE
tech-c: RDS-RIPE
status: ASSIGNED PA
remarks: +--+
remarks: | ABUSE CONTACT: abuse@rdsnet.ro IN CASE |
remarks: | OF HACK ATTACKS, ILLEGAL ACTIVITY, |
remarks: | VIOLATION, SCAMS, PROBES, SPAM, ETC. |
remarks: +--+
mnt-by: AS8708-MNT
mnt-lower: AS8708-MNT
source: RIPE # Filtered

role: Romania Data Systems NOC

18

www.manaraa.com

address: 71-75 Dr. Staicovici
address: Bucharest / ROMANIA
phone: +40 21 30 10 888
fax-no: +40 21 30 10 892
e-mail: contact-tech@rdsnet.ro
admin-c: CN19-RIPE
tech-c: CN19-RIPE
tech-c: GEPU1-RIPE
nic-hdl: RDS-RIPE
mnt-by: AS8708-MNT
remarks: +--+
remarks: | ABUSE CONTACT: abuse@rdsnet.ro IN CASE |
remarks: | OF HACK ATTACKS, ILLEGAL ACTIVITY, |
remarks: | VIOLATION, SCAMS, PROBES, SPAM, ETC. |
remarks: +--+
source: RIPE # Filtered

person: Iordache Silviu
address: Str Traian Vuia, bl 16,sc. C, et3, ap.54
address: Buzau / Romania
phone: +4-0744821745
fax-no: +4-338401143
e-mail: iorsior@yahoo.com
nic-hdl: IS1460-RIPE
mnt-by: AS8708-MNT
mnt-by: AS8708-MNT
remarks: +--+
remarks: | ABUSE CONTACT: abuse@rdsnet.ro IN CASE |
remarks: | OF HACK ATTACKS, ILLEGAL ACTIVITY, |
remarks: | VIOLATION, SCAMS, PROBES, SPAM, ETC. |
remarks: +--+
source: RIPE # Filtered

% Information related to ’82.76.0.0/14AS8708’

route: 82.76.0.0/14
descr: RDSNET
origin: AS8708
mnt-by: AS8708-MNT
source: RIPE # Filtered

From this whois query, quite a bit of information can be gathered:

• The entire range of IP addresses that this organization owns is shown.
19

www.manaraa.com

• The actual street address, city, state and zip of this organization that owns that IP
address is given. In this case, the owner of this IP address resides in Bucharest,
Romania.

• Phone numbers for the organization are given.

• A e-mail contact for general communications is provided.

• Another e-mail contact where abuse is reported.

• A named contact who is a Senior IP engineer in this organization is given with his
e-mail and phone number.

At this point, the investigation moves to the ISP that owns the particular IP address.

In order to trace the source of the IP, the ISP would have to check their logs to try and

determine what machine was logged in at the particular IP address at a given time.

3.2 Technique Advantages and Disandvantages

There are limitations of tracking by IP addresses. Many ISPs use dynamic IPs with

their customers. Every time a machine logs on to the ISP’s network, they could have a

different IP address. This makes it very difficult to determine who had a particular IP

address at a particular time. Some ISPs do not actually log IP assignments; therefore, the

machine that was using a particular IP at a particular time cannot be determined. Other

limitations include the use of public wireless access points at coffee shops and other public

venues, the use of anonymous proxies which hide the actual IP address of a particular

machine, and cooperation of foreign ISPs in providing information on the possible phisher.

Another disadvantage with this technique is that the images may not be loaded by the

phisher when he checks his results. If the results are viewed in a non-HTML environment,

then the images will not be loaded, and no log entry will be generated. Also many web

20

www.manaraa.com

based e-mail, which it is believed the phishers’ use, allow the blocking of images in e-

mails. An e-mail user might have to explicitly tell the browser to load the images.

3.3 Experiment Conclusions

In conclusion, this trial experiment did show that this investigative method could be a

valid way of tracking down phishing attacks. With this type of investigation, the attacks

can actually be traced to the source of the problem in some situations.

Since most of the data in this project came from members of the CSE department both

students and faculty, a very limited variety of phishing attack methods were seen. A larger

variety in phishing attack methods would more thoroughly test the investigation method.

21

www.manaraa.com

CHAPTER 4

FINAL EXPERIMENT

4.1 Experiment Setup

This experiment was run from June 20, 2007 through October 5, 2007. Fifty-one

sites were investigated using emails forwarded from Mississippi State University Com-

puter Science and Engineering faculty, grad students, BullyLUG (the local Linux Users

Group), others capable of identifying phishing emails and web page links from the web

site http://www.phishtank.com.

Initially phishing sites were gathered solely from e-mail traffic. This was proven to be

an ineffective method due to the lack of new phishing emails received. When the e-mail

was received, the website URL, and the company that was being phished was recorded.

Once the site was loaded, the IP of the site compromised was recorded along with the

country of the ISP hosting the compromised site. The honeytokens were manually entered

into the site if possible. If not, the values were entered after submitting the data via a web

proxy. While browsing the site and filling out the forms, anything unique about the site

was recorded along with the scripting language used with the forms.

Ultimately acquiring phishing sites via email traffic was inefficient and did not produce

enough data. PhishTank.com was given as another source for phishing attacks. The site

22

www.manaraa.com

allows users to submit phishing sites. Registered members to the site can confirm or reject

the site as a phishing site. Once enough votes are gathered, the site is either confirmed or

rejected. Users can also submit a site to see if it has already been submitted, confirmed, or

rejected as a phishing site. This site was then used to obtain links to phishing sites for the

remainder of the experiment. Data was still collected in the same manner.

The following three tables show a breakdown in the countries hosting compromised

servers, companies that were phished, and the scripting languages used on these sites.

The phishing sites investigated revealed nineteen different country locations. Out of these

nineteen countries, the top four countries with phishing sites were the United States with

fifteen, Korea with six, and Australia and the Netherlands with five. These sites also

revealed eighteen companies being phished. The top four companies phished were PayPal

with thirteen, Ebay with eleven, and Bank of America and Citizen’s Bank with five. PHP

was an overwhelming majority among the scripting languages used. Forty-two of the fifty-

one sites used PHP. Nineteen of those forty-three used JavaScript for their error checking.

The web server logs were checked every few minutes after the investigation for the first

20 - 30 minutes and then ever few hours to determine if a referral had been made. Once

a referral was found, the referral was recorded along with the IP of the phisher, country

of origin of the IP, website viewed (if applicable), OS, browser (if applicable), and turn

around time.

23

www.manaraa.com

Table 4.1

Countries with Compromised Web Servers

Country of Compromised Server Count
United States 15

Korea 6
Australia 5

Netherlands 5
Taiwan 3

Germany 2
Russia 2

United Kingdom 2
Bahrain 1
Canada 1

Denmark 1
Ecuador 1
France 1
Japan 1

Mexico 1
Portugal 1

San Salvador 1
Serbia and Montenegro 1

Thailand 1

24

www.manaraa.com

Table 4.2

Companies that were Phished

Companies Phished Count
PayPal 13
Ebay 11

Bank of America 5
Citizen’s Bank 5

Capital One 3
NatWest Bank 2

Wachovia 2
Amazon 1

Bank of the Cascades 1
BankTennesee 1
Citadel FCU 1

Citibank 1
E*TRADE 1

Halifax 1
MidAmerica Bank 1

NetBank 1
Yahoo Mail 1

Table 4.3

Scripting Languages that were used

Scripting Language Used Count
PHP 23

PHP & JavaScript 19
JavaScript 4

ASP 2
CGI 2

ASP & JavaScript 1

25

www.manaraa.com

4.2 Results

Part of the research goals was to create automation scripts to perform the investigation.

Initial scripts were created using the Python programming language. Some basic testing

was done on the scripts with simulated phishing sites initially with great success. Once the

script began to be used on live phishing sites, new reasons for the script to fail were found

with each email. Some of these methods include, but are not limited to:

• Encoded HTML files

• Some types of HTML and other script redirects

• HTML tags spread over multiple lines

Initially, the script was modified to handle changes that were discovered, but each

phishing email brought new bugs. During these testing runs, a referral was never generated

from any site. Eventually it was determined that the automation script was too large of a

project to handle an efficient variety of phishing sites to be useful in this investigation.

It was deemed that the final data was more important than the automation process. The

only way to guarantee the result data was to run the investigation manually. Therefore, the

final investigation was done manually as outlined in the real world preliminary experiment

discussed in Section 3.1.2. The automation script is included in Appendix C as a starting

point for any future work.

The investigation set out to accomplish two different tasks. First and foremost was

to quantify the ability of the investigation technique to obtain a single source IP of the

phisher. The second task was to begin to develop a profile of a typical phisher for use in

developing further investigation or protection techniques.

26

www.manaraa.com

For the the first task, fifty-one sites were investigated with thirteen returning at least

one HTML referral for a 25.5% success rate. The peak success rate over the course of the

investigation was approximately 27 - 28%. The full details of the sites investigated and the

referrals generated are listed in Appendix E. Of the thirteen sites, eight had referrals from

the html links, eleven had referrals from the image links, and six had referrals from both.

Among the seven that did not have referrals from both the images and the HTML links,

five were image referrals.

As can be seen, most of the referrals were generated by the image links which was

expected. The number of referrals from HTML links does lessen the concern of images

being blocked by browsers or email applications. This gives further hope that the referral

percentage can be increased as the method is refined.

In order to begin to profile the typical phisher, several factors were gathered from the

HTML referrals and the sites being investigated. These factors are:

• Factors listed in previous section

• Location of phisher

• Browser used by phisher

• Operating system used by phisher

Phishers were indentified from only 3 countries. United States and the Netherlands

each had 6 phishing attacks traced back to them, with Romania being the third country.

Most of the United States IP belonged to IP addresses owned by AOL. This could be

phishers who used free AOL hours from CDs to carry out their phishing attack. This

could make tracking down the phisher difficult depending on the accuracy in the details

registered with the account.
27

www.manaraa.com

Table 4.4

Countries of IPs Used by Phishers

Countries of IPs Used by Phishers Count
Netherlands 6

United States 6
Romania 1

Firefox and Internet Explorer came back as the only browsers used by phishers. Inter-

net Explorer led with eight referrals, with Firefox having the other five. These results were

fairly expected due to the vast popularity of these two browsers.

Table 4.5

Browsers Used by Phishers

Browsers Used by Phishers Count
Internet Explorer 8

Firefox 5

Windows was an overwhelming choice of operating system. Twelve of the thirteen

referrals used it as their Operating System, with Linux taking the other referral.

The results of this investigation show a typical phisher was using an ISP in the United

States to hack a U.S. webserver. The phisher will then use that web server to host either

a PayPal or Ebay website scripted with the PHP language and possibly JavaScript error

checking. The phisher will then view these results using a computer with the Windows

operating system and the Internet Explorer web browser.

28

www.manaraa.com

Table 4.6

Operating Systems used by Phishers

Browsers Used by Phishers Count
Windows NT 5.1 12

Linux 1

29

www.manaraa.com

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This chapter returns to the hypothesis and research questions detailed in section 1.4.

The data outlined in the previous section is used to either confirm or refute the hypothesis.

Also, the data is used to answer the original research questions.

The hypothesis from section 1.4 was given as follows:

The combination of HTML web bugs and honeytokens can be used against
phishers to track the phishing attacks to their source thus being able to help
stop phishing where the problem starts.

In addition the research questions were as follows:

1. What methods and motives of phishing attacks can be discovered?

2. What other vulnerabilities are available to use against phishing attacks?

3. Can new phishing defenses be uncovered?

The hypothesis was proven in this particular experiment by the fact that 1 out of ev-

ery 4 phishing attacks were successfully traced back to a single IP source address. With

additional work on automated scripts, we believe this percentage could improve.

As addressed in section 4.2, the typical phisher method used here was to use the script-

ing language PHP to handle client-server interactions and to create the phishing website

30

www.manaraa.com

and JavaScript to handle error checking on the phishing site. The phisher would then check

for results using a Windows operating system and the Internet Explorer web browser.

The motives of the phisher varied greatly among the sites investigated. The level of

detail in information that the phisher attempted to acquire varied from basic credit card

information to asking for social security numbers, checking account numbers, routing

numbers, and even the mother’s maiden name. Ten of the fifty-one phishing sites only

attempted to acquire username/password combinations from potential victims as opposed

to asking for more detailed financial information.

Other vulnerabilites and new phishing defenses can possibly be uncovered by look-

ing at the tools used by the majority of phishers. Security vulnerabilities particular to

the Windows operating system and the Internet Explorer web browser could be leveraged

against phishers in order to attack vulnerabilites of the phisher’s host. For possible de-

fenses a larger database of phisher IP addresses could be used to create black lists within

web browsers to block access to potential phishers. This black list could also be used by

financial institutions as a red flag if account information is accessed from one of these IP

addresses. Other possible vulnerabilites and defenses could possibly be inferred from the

results information detailed in Section 4.2.

5.2 Future Research

Future work on this project should go further than just the HTML form of phishing

schemes. By looking at the server that was compromised to host the attack, vulnerabilities

that were exploited could be determined.

31

www.manaraa.com

While looking at different phishing schemes, it was noticed that the directory struc-

ture of the schemes were very similar. This is due to the fact that phishers use premade

‘kits’ to set up their schemes across a large number of systems. By communicating with

administrators of the compromised host after a phishing site is taken down, these phishing

kits could be recovered and studied for other insights into phishing schemes. In addition

to insights into phishing schemes, the phishing kits could be studied for exploits and other

vulnerabilities in their code.

Web bugs are not the only way to exploit web browsers and other client software used

for viewing results of phishing schemes. Other exploits in these types of software can

be studied as well to use in tracking down the source of phishing schemes. As discussed

in the previous section, vulnerabilities of a particular operating system, web browser, or

scripting language could be explored as futher attacks against phishing as well as future

defenses using other results data.

As mentioned previously, automating the process was unsuccessful. If this were ad-

dressed in future work, it is possible that greater success could be achieved. This would

allow the process to be used on a larger scale against a much larger data set.

Lastly, this process could possibly be applied to other computer security areas as well.

One example of this would be to embed web bugs into a Nigerian 411 scam reply e-mail.

32

www.manaraa.com

REFERENCES

[1] “PortSwigger.net - web application security,” 2007,
http://portswigger.net/suite/index.html (current Oct. 22, 2007).

[2] T. H. P. . R. Alliance, “Know Your Enemy: Phishing Beyond the Scenes of Phishing
Attacks,” 2005, http://www.honeynet.org/papers/phishing/index.html (current Feb.
6, 2005.

[3] D. Geer, “Security Technologies Go Phishing,” Computer, vol. 38, no. 6, June 2005,
pp. 18–21.

[4] G. Goth, “Phishing Attacks Rising, but Dollar Losses Down,” IEEE Security &
Privacy Magazine, vol. 3, no. 1, January-February 2005, p. 8.

[5] W. T. Harding, A. J. Reed, and R. L. Gray, “Cookies and Web Bugs: What They Are
and How They Work Together,” Information Systems Management, vol. 18, no. 3,
2001, pp. 17–24.

[6] D. Martin, H. Wu, and A. Alsaid, “Hidden Surveillance by Web sites: Web Bugs
in Contemporary Use,” Communications of the ACM, vol. 46, no. 12, 2003, pp.
258–264.

[7] Microsoft.com, “Microsoft Phishing Filter: A New Ap-
proach to Building Trust in E-Commerce Content,” 2005,
http://www.microsft.com/downloads/details.aspx?family-id=b4022c66-99bc-
4a30-9ecc-8bdefcf0501d&displaylang=en (current Mar. 31, 2005).

[8] K. D. Mitnick and W. L. Simon, The Art of Deception: Controlling the Human
Element of Security, Wiley Publishing, Indianapolis, Indiana, 2002.

[9] L. Spitzner, Honeypots: Tracking Hackers, Pearson Education, Inc., Boston, Mas-
sachusettes, 2002.

[10] L. Spitzner, “Honeytokens: The Other Honeytokens,” 2003,
http://www.securityfocus.com/infocus/1713 (current Nov. 18, 2005).

[11] N. Thompson, “New Economy; The “Honeytoken,” an Innocuous Tag in a File Can
Signal an Intrusion in a Company’s Database,” NY Times, April 2003.

33

www.manaraa.com

[12] A. van der Merwe, M. Loock, and M. Dabrowski, “Characteristics and Responsi-
bilities Involved in a Phishing Attack,” WISICT ’05: Proceedings of the 4th Inter-
national Symposium on Information and Communication Technologies. ACM, 2005,
pp. 249–254, Trinity College Dublin.

34

www.manaraa.com

APPENDIX A

PRELIMINARY EXPERIMENT PERL SOURCE CODE

35

www.manaraa.com

A.1 automate.pl

#!/usr/bin/perl

use strict;
use LWP::Simple;
use LWP::UserAgent;
use File::Copy;

###
#Create new gif and html files for this particular
#phish attack.
###

my $ur` = @ARGV[0];
my $root url;

if($ur` =˜ m/(http:\/\/(.+\/)+)/cgi) {
$root url = $1;

}

my @mArray = ("Jan","Feb","Mar","Apr","May","Jun",
"Jul","Aug","Sep","Oct","Nov","Dec");

my $mon = (localtime)[4];
my $date = (localtime)[3]+1;
my $year = (localtime)[5]+1900;
my $hour = (localtime)[2];
my $min = (localtime)[1];
my $sec = (localtime)[0];

my $date time = $year."_".$mArray[$mon]."_"
.$date."_".$hour."_".$min."_".$sec;

my $temp`ateGIFFi`e = "/var/www/html/images/template.gif";
my $gif file = $date time.".gif";
my $newGIFFi`e = "/var/www/html/images/".$gif file;

my $temp`ateHTMLFi`e = "/var/www/html/index.html";
my $htm` file = $date time.".html";
my $newHTMLFi`e = "/var/www/html/html_files/".$htm` file;

copy($temp`ateGIFFi`e,$newGIFFi`e);
copy($temp`ateHTMLFi`e,$newHTMLFi`e);
###

###
#Add new attack to database file siteData.csv
###

open(DB,"+>> siteData.csv");

36

www.manaraa.com

my $data = $ur`.",".$date time.",auto\n";
print DB $data | | die "Could not write to file.\n";

close(DB);
###

###
#Parse remote html file for form data. Do this up
#to 3 times as long as the result is a form.
###

system("rm","-f","./output_html.txt");
open(HTML,"+>> output_html.txt");

my $action root;
my $form count = 1;
my $form flag = 1;

print "URL is $url.\n";

while(($form flag) && ($form count <= 3)) {
if($form count == 1) {

my $htm` = get($ur`)
or die "Couldn’t open URL.";

my $htm` orig = $htm`;

print HTML $htm`;
close(HTML);

}

open(HTML,"< output_html.txt")
or die "Couldn’t open URL file.";

my $action url;
my $method;
my @input names;
my @types;
my @values;

print "Starting while loop.\n";
while(my $`ine = readline(HTML)) {

if($`ine =˜
m/<form.*method\s*=\s*[\"\’]?(\w{3,4})[\"\’]?/i) {
$method = $1;
print "Method is $method.\n";

}

if($line =˜
m/action\s*=\s*[\"\’]?(\w*\.\w*)[\"\’]?/i) {
$action_root = $1;
$action_url = $root_url.$action_root;

37

www.manaraa.com

print "Action is $action url.\n";
print "Action Root is $action root.\n";

}

if($line =˜ m/\<input/i) {
my $input_type = 0;
my $input_value = 0;
do {

if($line =˜
m/type\s*=\s*[\"\’]?(\w+)[\"\’]?/i) {
push @types,$1;
print "Input type is $1.\n";
$input_type = 1;

}
if($line =˜

m/value\s*=\s*[\"\’]?(\w+)[\"\’]?/i) {
push @values,$1;
print "Input value is $1.\n";
$input_value = 1;

}
if($line =˜

m/name\s*=\s*[\"\’]?(\w+)[\"\’]?/i) {
push @input_names,$1;
print "Input name is $1.\n";

}
if($input_type == 0) {

push @types,"text";
}
if($input_value == 0) {

push @values," ";
}
$line = readline(HTML);

} while($line !˜ m/>/i)
}

if($line =˜
m/<select\s*name\s*=\s*[\"\’]?(\w+)[\"\’]?.*
<option.*<option\.*value\s*=\s*[\"\’]?(\w+)
[\"\’]?/cgi) {
push(@types,"select");
push(@input_names,$1);
push(@values,$2);
print "Select statment type, name, value ";
print "equals select, $1, $2.\n";

}
}
close(HTML);

###

###
#Creating form values for form submission

my $size = @input_names;

38

www.manaraa.com

my $form_values = "?";
my $input_flag = 0;

for(my $i=0; $i<$size; $i++) {
print "Current type is $types[$i].\n";
if(($types[$i] eq "hidden")

|| ($types[$i] eq "checkbox")) {
$form_values .= "$input names[$i]=$va`ues[$i]&";

}
elsif (($types[$i] eq "text") ||

($types[$i] eq "Text") ||
($types[$i] eq "password") ||
($types[$i] eq "Password")) {

if($input_flag) {
$form_values .= "$input names[$i]=

%3Cimg%20src=\%22http%3A%2F%2F130%2E18%2E5%2E11%2F
images%2F$gif file\%22%3E&";

}
else {

$form_values .= "$input names[$i]=
%3Ca%20href=\%22http%3A%2F%2F130%2E18%2E5%2E11%2F
html%5Ffi`es%2f$htm` file\%22%3Emyspam\@hotmail.com
%3C%2Fa%3E&";

}
$input_flag = !$input_flag;

}
}

chop $form_values;

###

###
#Autofilling form with html tags

if($method eq "POST" || $method eq "post") {
my $str_length = length($form_values);
my $post_values = substr($form_values,1,

$str_length);
print "Submitting POST data $post values\n";
system("wget","−O","output html.txt","−−post−data",

"$post values","$action url");
}
elsif($method eq "GET" || $method eq "get") {

my $new_url = $action_url.$form_values;
print "Submitting GET data $new url.\n";
system("wget","−O","output html.txt","$new url");

}
###

###
#Checking output to see if we still have a form

39

www.manaraa.com

sysopen(NEW_PAGE,"./output html.txt","O RDONLY") ||
die "Could not open new form.\n";

while(my $line = readline(NEW_PAGE)) {
if($line =˜ m/<form/cgi) {

$form_flag = 1;
last;

}
else {

$form_flag = 0;
}

}
$form_count++;

}
###

40

www.manaraa.com

A.2 imagesetup.pl

#!/usr/bin/perl

use strict;
use LWP::Simple;
use LWP::UserAgent;
use File::Copy;

###
Create new gif and html files for this particular
phish attack.
###

my $url = @ARGV[0];
my $rootUrl;

if($url =˜ m/(http:\/\/(.+\/)+)/cgi) {
$rootUrl = $1;

}

my @mArray = ("Jan","Feb","Mar","Apr","May","Jun",
"Jul","Aug","Sep","Oct","Nov","Dec");

my $mon = (localtime)[4];
my $date = (localtime)[3]+1;
my $year = (localtime)[5]+1900;
my $hour = (localtime)[2];
my $min = (localtime)[1];
my $sec = (localtime)[0];

my $dateTime = $year."_".$mArray[$mon]."_".$date.
"_".$hour."_".$min."_".$sec;

my $templateGIFFile = "/var/www/html/images/template.gif";
my $gifFile = $dateTime.".gif";
my $newGIFFile = "/var/www/html/images/".$gifFile;

my $templateHTMLFile = "/var/www/html/index.html";
my $htmlFile = $dateTime.".html";
my $newHTMLFile = "/var/www/html/html_files/".$htmlFile;

copy($templateGIFFile,$newGIFFile);
copy($templateHTMLFile,$newHTMLFile);
###

###
#Add new attack to database file siteData.csv
###

open(DB,"+>> siteData.csv");

41

www.manaraa.com

my $data = $url.",".$dateTime.",man\n";
print DB $data | | die "Could not write to file.\n";

close(DB);
###

###
#Print out form field values to cut and paste into
#the form.
###

print "Image tag is ";
print "<img src=’http://130.18.5.11/images/";
print "$gifFile’>\n";

print "Image tag in hex code is ";
print "%3Cimg+src%3D%27http%3A%2F%2F";
print "130.18.5.11%2Fimages%2F$gifFile%27%3E\n";

print "HTML tag is ";
print "<a href=’http://130.18.5.11/htmlFiles/
print "$htmlFile’>myspam\@hotmail.com\n";

print "HTML tag in hex code is ";
print "%3Ca+href%3D%27http%3A%2F%2F130.18.5.11%2F";
print "html_files%2F$htmlFile%27%3E";
print "myspam\@hotmail.com%3C%2Fa%3E\n";
###

42

www.manaraa.com

APPENDIX B

PRELIMINARY EXPERIMENT HTML/PHP SOURCE CODE

43

www.manaraa.com

B.1 phishFormGet.php

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML
4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>
<title>Phishing Test Form</title>
<meta http−equiv="content-type"
content="text/html; charset=utf-8">

</head>

<body>
<?php

$submit = $ POST[’submit’];

if($submit == ’y’) {
$name = $ POST[’name’];
$emai` = $ POST[’email’];

$query = "INSERT INTO project
VALUES (’$name’,’$email’)";

$connection = mysql connect(’localhost’, ’etsumc’,
’etfwb32547’);

mysql select db(’etsumc_cal’, $connection);

if((mysql query($query, $connection)) &&
mysql affected rows() == 1)

echo "<center>";
echo "Information Successfully Added.";
echo "</center>";

else
echo "<center>";
echo "Information NOT Successfully Added.";
echo "</center>";

}

?>

<center><h1>
<form action="phish_form_post.php" method="POST">

<input type="hidden" name="submit" value="y">
<table border="0">

<tr>
<td>Name:</td>

44

www.manaraa.com

<td><input type="text" name="name"></td>
</tr>
<tr>

<td>E−mail:</td>
<td><input type="text" name="email"></td>

</tr>
<tr>

<td> </td>
<td><input type="submit"></td>

</tr>
</table>

</form>
</h1></center>
</body>

</html>

45

www.manaraa.com

B.2 phishFormPost.php

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01
Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>
<title>Phishing Test Form</title>
<meta http−equiv="content-type"
content="text/html; charset=utf-8">

</head>

<body>

<center><h1>
<form action="phish_form_get.php" method="POST">

<input type="hidden" name="submit" value="y">
<table border="0">

<tr>
<td>Name:</td>
<td><input type="text" name="name"></td>

</tr>
<tr>

<td>E−mail:</td>
<td><input type="text" name="email"></td>

</tr>
<tr>

<td> </td>
<td><input type="submit"></td>

</tr>
</table>

</form>
</h1></center>
</body>

</html>

46

www.manaraa.com

B.3 showDB.php

<HTML>
<BODY>

<table align="center" border="0">
<center><h1>Project Test:
<?php

$query = "SELECT * FROM project";

$connection = mysql connect(’localhost’, ’etsumc’,
’etfwb32547’);

mysql select db(’etsumc_cal’, $connection);

$resu`t = mysql query($query, $connection);

while($row = mysql fetch row($resu`t)) {
echo "<tr><td>$row[0] $row[1]</td></tr>\n";

}
?>
</h1></center>

</table>
</BODY>
</HTML>

47

www.manaraa.com

APPENDIX C

ATTEMPTED AUTOMATION PYTHON SOURCE CODE

48

www.manaraa.com

C.1 automateDQ.py

#!/usr/bin/python

import filecmp #Used for file comparison to see if
#the same page is encountered

import os #imports os libraries
import re #imports regular expression library
import string
import urllib #imports web libraries

from HTMLParser import HTMLParser #Used for processing HTML files
from time import localtime, strftime #imports time libraries

class MyHTMLParser(HTMLParser):
actionField = ""
currentSelectField = ""
foundForm = 0
methodField = ""
optionCount = 0
params = {}

def handle starttag(self, tag, attrs):
if tag == "form":

MyHTMLParser.foundForm = 1
for value in attrs:

if value[0] == "action":
MyHTMLParser.actionField = value[1]

if value[0] == "method":
MyHTMLParser.methodField = value[1]

elif tag == "input":
inputVal = ""
nameValue = ""
typeValue = ""

for value in attrs:
if value[0] == "name":

nameValue = value[1]
elif value[0] == "type":

typeValue = value[1]
elif value[0] == "value":

inputVal = value[1]

typeValList = (typeValue,inputVal)

MyHTMLParser.params[nameValue] = typeValList

elif tag == "select":
for value in attrs:

if value[0] == "name":

49

www.manaraa.com

MyHTMLParser.currentSelectField = value[1]

elif tag == "option":
if MyHTMLParser.currentSelectField != "":

MyHTMLParser.optionCount = MyHTMLParser.optionCount+1

selectFieldValue = ""

if MyHTMLParser.optionCount == 2:
if MyHTMLParser.currentSelectField != "":

for value in attrs:
if value[0] == "value":

selectFieldValue = value[1]

MyHTMLParser.params[MyHTMLParser.currentSelectField] =
selectFieldValue

MyHTMLParser.currentSelectField = ""
MyHTMLParser.optionCount = 0

infile=open(’./newAttacks.csv’,’r’) #list of new attacks

for phish in infile: #Look at each phishing attack
m = string.split(phish,’,’)
url = m[0] #Get URL from infile
site = m[1] #Get business being exploited

site = site.rstrip(’\n’)

filename = strftime("%Y_%m_%d_%H_%M_%S", localtime())
filename = filename+’_dq’

outfileName = ’./’+filename+’/log.txt’

os.system("mkdir %s" % (filename))

outfile = open(outfileName,’w’)

outfile.write(’URL is ’+url+’\n’)
outfile.write(’Site is ’+site+’\n’)

outfile.write(’Filename is ’+filename+’\n’)
outfile.write(’Outfile name is ’+outfileName+’\n’)

###
#Get directory structure from url for relative pathnames#
in the action field
###

m = re.search("http://((.*/)*)",url,re.IGNORECASE)
if m:

actionRoot = m.group(1)
actionRoot = ’http://’+actionRoot

50

www.manaraa.com

###
#Create new gif files and html files for this particular#
#Create new gif files and html files for this particular#
phishing attack
###

gifTemplate = ’/var/www/html/images/template.gif’
gifNewfile = ’/var/www/html/images/’+filename+’_auto.gif’
os.system("cp %s %s" % (gifTemplate,gifNewfile))

htmlTemplate = ’/var/www/html/html_files/template.html’
htmlNewfile = ’/var/www/html/html_files/’+filename+’_auto.html’
os.system("cp %s %s" % (htmlTemplate,htmlNewfile))

##
Writes url, site exploited, and filename to logfile
for reference later
##

datafile = open(’./investigationList.csv’,’a’)
out = url+’,’+site+’,’+filename

datafile.write(out)
datafile.write(’\n’)
datafile.close

##
Creates links for form submission
##

htmlLink = ’
myspam@hotmail.com’

htmlHex = urllib.quote(htmlLink)

imageLink = ’’

imageHex = urllib.quote(imageLink)

##
Stores url locally for parsing
##

count = 1; #Keeps up with the number of pages
#being processed. Used in filenames
#for html files stored locally

countString = repr(count); #Converts count to a string

localFN = ’./’+filename+’/’+countString+’.html’

51

www.manaraa.com

urllib.urlretrieve(url,localFN)
#Stores html file into a local file

##
Parses local file to get html form parameters
##

fileExtListFile = open(’./fileExtensions.csv’,’w’)

m = re.search("/(.*?\..*?)$",url,re.IGNORECASE)

if m:
fileExtListFile.write(m.group(1))
fileExtListFile.write(’\n’)

processForm = 1

while processForm:
httpFile = open(localFN,’r’)

p = MyHTMLParser ()

outfile.write(’Parsing the file ========’+localFN+’\n’)
p.feed(httpFile.read())

if not p.foundForm:
processForm = 0

else:

##
Creates name=value pairs for form submission
##

dataDict = {}

htmlImage = 0 #Boolean variable to swap between html and image tags

for key in p.params.keys():
dictList = p.params[key]
if "hidden" == dictList[0]:

dataDict[key] = dictList[1]
else:

phoneNo = re.search("phone",key,re.IGNORECASE)
if phoneNo:

dataDict[key] = "5555555555"
else:

if htmlImage:
dataDict[key] = imageHex
htmlImage = 0

else:
dataDict[key] = htmlHex
htmlImage = 1

52

www.manaraa.com

##
Submits data to next web page
##

count = count+1

actionValue = p.actionField

httpSearch = re.search("http://",actionValue,re.IGNORECASE)

prevLocalFN = localFN

if not httpSearch:
actionValue = actionRoot+actionValue

outfile.write(’Action value is ’+actionValue+’\n’)

methodField = string.upper(p.methodField)
outfile.write(methodField+’**\n’)

if "POST" == methodField:
request = urllib.urlencode(dataDict)
newWebHandle = urllib.urlopen(actionValue, request)

countString = repr(count); #Converts count to a string
localFN = ’./’+filename+’/’+countString+’.html’

newHttpFile = open(localFN,’w’)
while 1:

data = newWebHandle.read(512)
if not data:

break
newHttpFile.write(data)

newHttpFile.close()
newWebHandle.close()

else:
request = urllib.urlencode(dataDict)
newPage = actionValue+’?’+request

newWebHandle = urllib.urlopen(newPage)

countString = str(count); #Converts count to a string
localFN = ’./’+filename+’/’+countString+’.html’
urllib.urlretrieve(newPage,localFN)

httpFile.close

urllib.urlcleanup() #Cleans up cache from urlretrieve calls

outfile.write(prevLocalFN+’and’+localFN+’\n’)

53

www.manaraa.com

if filecmp.cmp(prevLocalFN,localFN):
outfile.write(’Equal Files\n’)
processForm = 0

#p.foundForm = 0

outfile.write(’COUNT IS =======’+countString+’\n’)

if count == 6:
processForm = 0

#End of ’if not p.foundForm’ loop
#End of ’while processLoop’ loop

fileExtListFile.close()

#End of ’for phish in infile’ loop

infile.close

54

www.manaraa.com

C.2 automateSQ.py

#!/usr/bin/python

import filecmp #Used for file comparison to see if
#the same page is encountered

import os #imports os libraries
import re #imports regular expression library
import string
import urllib #imports web libraries

from HTMLParser import HTMLParser #Used for processing HTML files
from time import localtime, strftime #imports time libraries

class MyHTMLParser(HTMLParser):
actionField = ""
currentSelectField = ""
foundForm = 0
methodField = ""
optionCount = 0
params = {}

def handle starttag(self, tag, attrs):
if tag == "frame":

for value in attrs:
if value[0] == "src":

MyHTMLParser.actionField = value[1]

elif tag == "form":
for value in attrs:

if value[0] == "action":
MyHTMLParser.actionField = value[1]

if value[0] == "method":
MyHTMLParser.methodField = value[1]

elif tag == "input":
inputVal = ""
nameValue = ""
typeValue = ""

for value in attrs:
if value[0] == "name":

nameValue = value[1]
elif value[0] == "type":

typeValue = value[1]
elif value[0] == "value":

inputVal = value[1]

typeValList = (typeValue,inputVal)

MyHTMLParser.params[nameValue] = typeValList

55

www.manaraa.com

elif tag == "select":
for value in attrs:

if value[0] == "name":
MyHTMLParser.currentSelectField = value[1]

elif tag == "option":
if MyHTMLParser.currentSelectField != "":

MyHTMLParser.optionCount = MyHTMLParser.optionCount+1

selectFieldValue = ""

if MyHTMLParser.optionCount == 2:
if MyHTMLParser.currentSelectField != "":

for value in attrs:
if value[0] == "value":

selectFieldValue = value[1]

MyHTMLParser.params[MyHTMLParser.currentSelectField] =
selectFieldValue

MyHTMLParser.currentSelectField = ""
MyHTMLParser.optionCount = 0

infile=open(’./newAttacks.csv’,’r’) #list of new attacks

for phish in infile: #Look at each phishing attack
m = string.split(phish,’,’)
url = m[0] #Get URL from infile
site = m[1] #Get business being exploited

filename = strftime("%Y_%m_%d_%H_%M_%S", localtime())
filename = filename+’_sq’

outfileName = filename+’/log.txt’

os.system("mkdir %s" % (filename))

outfile = open(outfileName,’w’)

outfile.write(’URL is’+url+’\n’)
outfile.write(’Site is’+site+’\n’)

outfile.write(’Filename is’+filename+’\n’)
outfile.write(’Outfile is’+outfileName+’\n’)

###
#Get directory structure from url for relative pathnames#
in the action field
###

m = re.search("http://((.*/)*)",url,re.IGNORECASE)
if m:

56

www.manaraa.com

actionRoot = m.group(1)
actionRoot = ’http://’+actionRoot

###
#Create new gif files and html files for this particular#
phishing attack
###

gifTemplate = ’/var/www/html/images/template.gif’
gifNewfile = ’/var/www/html/images/’+filename+’_auto.gif’
os.system("cp %s %s" % (gifTemplate,gifNewfile))

htmlTemplate = ’/var/www/html/html_files/template.html’
htmlNewfile = ’/var/www/html/html_files/’+filename+’_auto.html’
os.system("cp %s %s" % (htmlTemplate,htmlNewfile))

##
Writes url, site exploited, and filename to logfile
for reference later
##

datafile = open(’./investigationList.csv’,’a’)
out = url+’,’+site+’,’+filename

datafile.write(out)
datafile.write(’\n’)
datafile.close

###
Downloads whois query of the compromised webserver
###

whoisFile = ’./’+filename+’/whois.txt’
os.system("whois %s > %s" % (url,whoisFile))

###
Takes whois query and logs the physical address
###

whoisLogFile = open(’./serverLoc.csv’,’a’)
whoisFH = open(whoisFile,’r’)

for line in whoisFH:
m = re.search("ˆaddress:\s*(.*)",line,re.IGNORECASE)
if m:

whoisLogFile.write(m.group(1))
else:

m2 = re.search("ˆrole:\s*(.*)",line,re.IGNORECASE)
if m2:

roleLine = 1
whoisLogFile.write(m2.group(1),re.IGNORECASE)

else:

57

www.manaraa.com

roleLine = 0

m3 = re.search("ˆperson:\s*(.*)",line,re.IGNORECASE)
if m3:

personLine = 1
whoisLogFile.write(m3.group(1))

else:
personLine = 0

whoisLogFile.close()
whoisFH.close()

##
Creates links for form submission
##

htmlLink = "
myspam@hotmail.com"

htmlHex = urllib.quote(htmlLink)

imageLink = ""

imageHex = urllib.quote(imageLink)

##
Stores url locally for parsing
##

count = 1; #Keeps up with the number of pages
#being processed. Used in filenames
#for html files stored locally

countString = repr(count); #Converts count to a string

localFN = ’./’+filename+’/’+countString+’.html’

urllib.urlretrieve(url,localFN)
#Stores html file into a local file

##
Parses local file to get html form parameters
##

fileExtListFile = open(’./fileExtensions.csv’,’w’)

m = re.search("/(.*?\..*?)$",url,re.IGNORECASE)

if m:
fileExtListFile.write(m.group(1))
fileExtListFile.write(’\n’)

58

www.manaraa.com

processForm = 1

while processForm:
httpFile = open(localFN,’r’)

p = MyHTMLParser ()

outfile.write(’Parsing the file ========’+localFN+’\n’)
p.feed(httpFile.read())

##
Creates name=value pairs for form submission
##

dataDict = {}

htmlImage = 0 #Boolean variable to swap between html and image tags

for key in p.params.keys():
dictList = p.params[key]
if "hidden" == dictList[0]:

dataDict[key] = dictList[1]
else:

phoneNo = re.search("phone",key,re.IGNORECASE)
if phoneNo:

dataDict[key] = "5555555555"
else:

if htmlImage:
dataDict[key] = imageHex
htmlImage = 0

else:
dataDict[key] = htmlHex
htmlImage = 1

###
Submits data to next web page
##

count = count+1

actionValue = p.actionField

httpSearch = re.search("http://",actionValue,re.IGNORECASE)

prevLocalFN = localFN

if not httpSearch:
actionValue = actionRoot+actionValue

methodField = string.upper(p.methodField)
outfile.write(methodField+’**\n’)
if "POST" == methodField:

59

www.manaraa.com

outfile.write(’Action value is ’+actionValue+’\n’)

request = urllib.urlencode(dataDict)
newWebHandle = urllib.urlopen(actionValue, request)

countString = repr(count); #Converts count to a string
localFN = ’./’+filename+’/’+countString+’.html’

newHttpFile = open(localFN,’w’)
while 1:

data = newWebHandle.read(512)
if not data:

break
newHttpFile.write(data)

newHttpFile.close()
newWebHandle.close()

else:
request = urllib.urlencode(dataDict)
newPage = actionValue+’?’+request

newWebHandle = urllib.urlopen(newPage)

countString = str(count); #Converts count to a string
localFN = ’./’+filename+’/’+countString+’.html’
urllib.urlretrieve(newPage,localFN)

httpFile.close

urllib.urlcleanup() #Cleans up cache from urlretrieve calls

outfile.write(prevLocalFN+’ and ’+localFN+’\n’)

if filecmp.cmp(prevLocalFN,localFN):
outfile.write("Equal Files\n")
processForm = 0

#p.foundForm = 0

outfile.write(’COUNT IS =======’+countString+’\n’)
if count == 6:

processForm = 0

#End of ’while processLoop’ loop

fileExtListFile.close()

#End of ’for phish in infile’ loop

infile.close

60

www.manaraa.com

APPENDIX D

FINAL EXPERIMENT PYTHON SOURCE CODE

61

www.manaraa.com

D.1 imagesetupDQ.py

#!/usr/bin/python

import os #imports os libraries
import string
from time import localtime, strftime #imports time libraries
import urllib

infile=open(’./newAttacks.csv’,’r’) #list of new attacks

for phish in infile: #Look at each phishing attack
m=string.split(phish,’,’)
url=m[0] #Get URL from infile
site=m[1] #Get business being exploited
print ’URL is’,url
print ’Site is’,site

filename = strftime("%Y_%b_%d_%H_%M_%S", localtime())
filename = filename+’_dq’

print ’Filename is’,filename

###
#Create new gif files and html files for this particular#
phishing attack
###

gifTemplate=’/var/www/html/images/template.gif’
gifNewfile=’/var/www/html/images/’+filename+’_man.gif’
os.system("cp %s %s" % (gifTemplate,gifNewfile))

htmlTemplate=’/var/www/html/html_files/template.html’
htmlNewfile=’/var/www/html/html_files/’+filename+’_man.html’
os.system("cp %s %s" % (htmlTemplate,htmlNewfile))

##
#Writes url and filename to logfile for reference later#
##

datafile=open(’./siteData.csv’,’w’)
out=url+’,’+filename
datafile.write(out)
datafile.close

##
#Print out html tags to use in phisher’s form#
##

html reg = ’
myspam@hotmail.com’

62

www.manaraa.com

print "HTML link is "
print html reg

html hex = urllib.quote(html reg)

print "HTML link in hex code is "
print html hex

img reg = ’’

print "IMG tag is "
print img reg

img hex = urllib.quote(img reg)

print "IMG tag in hex code is "
print img hex

#End of ’for phish in infile’ loop

infile.close
os.remove(’./newAttacks.csv’)

63

www.manaraa.com

D.2 imagesetupSQ.py

#!/usr/bin/python

import os #imports os libraries
import string
from time import localtime, strftime #imports time libraries
import urllib

infile=open(’./newAttacks.csv’,’r’) #list of new attacks

for phish in infile: #Look at each phishing attack
m=string.split(phish,’,’)
url=m[0] #Get URL from infile
site=m[1] #Get business being exploited
print ’URL is’,url
print ’Site is’,site

filename = strftime("%Y_%b_%d_%H_%M_%S", localtime())
filename = filename+’_sq’
print ’Filename is’,filename

###
#Create new gif files and html files for this particular#
phishing attack
###

gifTemplate=’/var/www/html/images/template.gif’
gifNewfile=’/var/www/html/images/’+filename+’_man.gif’
os.system("cp %s %s" % (gifTemplate,gifNewfile))

htmlTemplate=’/var/www/html/html_files/template.html’
htmlNewfile=’/var/www/html/html_files/’+filename+’_man.html’
os.system("cp %s %s" % (htmlTemplate,htmlNewfile))

##
#Writes url and filename to logfile for reference later#
##

datafile=open(’./siteData.csv’,’w’)
out=url+’,’+filename
datafile.write(out)
datafile.close

##
#Print out html tags to use in phisher’s form#
##

html reg = "
myspam@hotmail.com"

64

www.manaraa.com

print "HTML link is "
print html reg

print "HTML link is "
print html reg

html hex = urllib.quote(html reg)

print "HTML link in hex code is "
print html hex

img reg = ""

print "IMG tag is "
print img reg

img hex = urllib.quote(img reg)

print "IMG tag in hex code is "
print img hex

#End of ’for phish in infile’ loop

infile.close

65

www.manaraa.com

APPENDIX E

INVESTIGATION DATA

66

www.manaraa.com

Table E.1

Phishing Sites Investigated

Case No Site
1 http://fr.ebayobjects.com/6k%3Bh=http://3731128842:82/ebayISAPII.dll-cgi/index.php
2 http://mckim.skhu.ac.kr/bbs/data/ai/1115632907/.military/efs/servlet/military/
3 http://signin.ebay.com.1234.tty.btd.com.sg/ws/eBayISAPI.php?cmd=SignIn&co_partnerId=2&pUserId=&

siteid=0&pageType=&pa1=&i1=&bshowgif=&UsingSSL=&ru=&pp=&pa2=&errmsg=&runame=
4 http://towernet.capitalonebank.com.id22crlsdu.sing34.biz/verify/customerservice/formpage.html
5 http://210.66.55.11/Images/paypal/index.htm
6 http://www.liceymum.ru/images/smilies/index.htm
7 http://moneywireinc.selfip.net/paypal.html
8 http://75.23.0.9/MembersLogin/index.htm
9 http://1358148044/%66%61%6D%69%6C%79/media.renamed.vunerable/.https:/capitalone.com/login.php?/

objectclicked=navcustomercarelink&source=recentactivity&SID=200002227628582
10 http://www.burninggirlsonline.com/pics/cmd-run=/login.htm
11 http://intopsgroup.net/skin/red/mainimg/netbank.com.au/aubank/www3.netbank.commbank.com.au/update/index.htm
12 http://212.62.47.196//.Artikelnummer/18993457382/bitteEinloggen/index.php
13 http://moneymanagergps-id774144343.citizensbank.com.pal-neto.cn/gps/userdir/onlineform.aspx/
14 http://69.95.145.147:443/us.etrade.com/login.htm?Survey
15 http://www.sanorga.de/rdx/cache/index.html?ssl=promos/jump/checking/

?cm_sp=ThankYou-Checking-_-Free%20Checking%20with%20Direct%20Deposit-_-Open%20SignOn
16 http://www.un3.net/imgbay/uploads/confirm-paypal/
17 http://61.19.233.130/˜saifon/%20%20/mid/step1.html
18 http://207.36.160.15/icons/.../www.bankofamerica.com/sslencrypt218bit/online_banking/
19 http://onlinesession-724822614.natwest.com.palvica131.cn/updatemode/userdatadirectory/start.aspx/
20 http://surgicalservicesinternational.com/editables/flash/lipo/module.dll.php?

customerid=rod@bradbury.worldonline.co.uk&co_partnerId=2&siteid=0&ru=&PageName=login_run&
pp=pass&pageType=708XeMWZllWXS3AlBXVShqAhQRfhgTDrf=
https://signin.ebay.com/ws/eBayISAPI.dll?SignIn&UsingSSL=1&pUserId=&co_partnerId=2&siteid=0&ru=&pp=&
pageType=708&MfcISAPICommand=ConfirmRegistration&708XeMWZllWXS3AlBXVShqAhQRfhgTDrfQRfhgTDrfA

21 http://www.takemetothewu.com/x/View.htm
22 http://210.60.133.203/icons/small/ps1.gif/signin.ebay.com/ws/ebayISPP.dll/SignIn/
23 http://teencreek.org/phpBB2/language/lang_english/timbre/index1.php
24 http://moneymanagergps-id713480.citizensbank.com.oida17.cn/gps/userdir/onlineform.aspx/
25 http://66.49.130.245/˜martin/-/PayPal/updates/us/webscr.php?cmd=_login-run
26 http://fondolisiados.gob.sv/error/include/capitalone/info.htm
27 http://wvps212-241-211-27.vps.webfusion.co.uk/www.halifax-online.co.uk/_mem_bin/

formslogin.asp_source=halifaxcoukHOME/
28 http://64.150.167.151/addssd/
29 http://diata.dk/modules/mod_as_category/images/service.htm
30 http://est-213-228-152-145.netvisao.pt/fonts/www.signin.ebay.com/beware.buyer.html
31 http://www.cnmd.org/bbs/.secure_ssl30/33.swf/militarybankonline.bankofamerica/efs/servlet/

military/login.htm?id=1191071916
32 http://v1338.ncsrv.de:84/bankofamerica/
33 http://home.frv.fr/dot/amazon.com/index.htm
34 http://securelogin-26805221.moneymanagergps.com.gts72.com/Online_Form.htm
35 http://id-199044007.citizensbankmoneymanagergps.com.bk4ft.zj.cn/securepage/challenge.aspx/
36 http://payrhpal.com/
37 http://78.38.172.3/citadel/
38 http://onlinesession-51728.natwest.com.miloe2r.zj.cn/updatemode/userdatadirectory/start.aspx/
39 http://140.8.233.220.exetel.com.au/.www.paypal.com/webscr.php?cmd=_login-run
40 http://www.csifanclub.com/coppermine/albums/userpics/newdir1/albacaza.htm
41 http://ernest-industries.com/Upload/webscrcmd=_account-run%5Cupdates-paypal%5Cconfirm-paypal/
42 http://signin.cgi3.com.wsbayisapi.dll.co-partnerid.signinusingssl.powersellers-cgi5bay.com.istemp.com/cgi/

www.ebay.com/3FMyeBay20pp-20pa220errmsg2runameruparams-ruproduct-sidfavoritenavconfirm0ebxPageTypeexisting
Email20isCheckoutmigrateVisitor1SignIn/login.html

43 http://www.broeske.com/barb/www.paypal.com/cgi-bin/online-security=paypal/cgi-bin=_connexion/
online_security=information/webscrcmd=_login-run/webscrcmd=_account-run/updates-paypal/
confirm-paypal/update.php

44 http://www.motoplus.ro/sitemap/cgi-bin/webscrcmd/update.php
45 http://securelogin-22072011.moneymanagergps.com.fcf18.com/login.htm
46 http://paythpal.com/
47 http://217.17.228.148:82/eBaySignIn-eBayISAPI/

signin.ebay.com_ws_eBayISAPI.dllSignIn%20ru=http=www.ebay.com.htm
48 http://www.brugro.nl/%20./index.html
49 http://85.25.48.26:84/cascades/index.htm?ssl=433
50 http://w0qqrromzr4qqsacatz133236qwqsocm.smtp.ru/Great-Dell-C600-P3-laptop-CDROM-FDD-AC-complete.htm
51 http://59.188.28.202/index.htm
52 http://www.unl.edu.ec/feue/cache/p/

67

www.manaraa.com

Table E.2

Phishing Sites Data

Case No Site IP Phishing Site Location Investigation Filenames Company Impersonated
1 222.100.130. 10 Korea 2007_Jun_20_11_28_52_dq, 2007_Jun_20_11_29_53_sq Ebay
2 203.246.275.102 Korea 2007_Jun_21_16_36_13_dq, 2007_Jun_21_16_36_22_sq Bank of America
3 77. 97.226. 19 Netherlands 2007_Jun_30_21_33_57_dq, 2007_Jun_30_21_34_13_sq Ebay
4 58. 81.164. 82 Japan 2007_Jul_04_13_25_16_dq, 2007_Jul_04_13_25_26_sq CapitalOne
5 210. 66. 55. 11 Taiwan 2007_Jul_04_13_58_47_dq, 2007_Jul_04_13_59_05_sq PayPal
6 81.222.134. 49 Russia 2007_Jul_17_21_37_59_dq, 2007_Jul_17_21_38_06_sq Wachovia
7 71.109.252.214 United States 2007_Aug_02_20_48_26_dq, 2007_Aug_02_20_48_31_sq PayPal
8 75. 23. 0. 9 United States 2007_Aug_02_20_58_03_dq, 2007_Aug_02_20_58_08_sq PayPal
9 80.243.177.204 United Kingdom 2007_Aug_08_19_05_49_dq, 2007_Aug_08_19_05_55_sq Capital One

10 72.232. 72. 98 United States 2007_Aug_08_19_20_34_dq, 2007_Aug_08_19_20_48_sq PayPal
11 210.223.132. 1 Korea 2007_Aug_08_19_41_20_dq, 2007_Aug_08_19_41_32_sq NetBank
12 212. 62. 47.196 Serbia & Montenegro 2007_Aug_08_19_54_35_dq, 2007_Aug_08_19_54_46_sq Ebay
13 60. 12.130.112 Austrailia 2007_Sep_10_20_14_12_dq, 2007_Sep_10_20_14_20_sq Citizen’s Bank
14 69. 95.145.147 United States 2007_Sep_10_20_30_13_dq, 2007_Sep_10_20_30_20_sq ETRADE
15 62. 26.185.250 Germany 2007_Sep_10_20_43_39_dq, 2007_Sep_10_20_43_46_sq Bank of America
16 208. 67.253. 2 United States 2007_Sep_16_15_11_05_dq, 2007_Sep_16_15_11_14_sq PayPal
17 61. 19.233.130 Thailand 2007_Sep_16_15_24_28_dq, 2007_Sep_16_15_24_35_sq MidAmerica Bank
18 207. 36.160. 15 United States 2007_Sep_16_15_32_18_dq, 2007_Sep_16_15_32_22_sq Bank of America
19 200. 77.213. 15 Mexico 2007_Sep_16_15_57_26_dq, 2007_Sep_16_15_57_37_sq NatWest Bank
20 72. 9.251. 74 United States 2007_Sep_16_16_17_44_dq, 2007_Sep_16_16_17_54_sq Ebay
21 216. 39. 58.194 United States 2007_Sep_17_20_05_23_dq, 2007_Sep_17_20_05_30_sq Citibank
22 210. 60.133.203 Taiwan 2007_Sep_17_20_20_42_dq, 2007_Sep_17_20_20_46_sq Ebay
23 38.113.185.219 United States 2007_Sep_17_20_38_44_dq, 2007_Sep_17_20_38_49_sq PayPal
24 60. 12.130.112 Australia 2007_Sep_17_21_04_04_dq, 2007_Sep_17_21_04_14_sq Citizen’s Bank
25 66. 49.130.245 Canada 2007_Sep_17_21_22_34_dq, 2007_Sep_17_21_22_40_sq PayPal
26 168.243.199. 98 San Salvador 2007_Sep_28_20_13_44_dq, 2007_Sep_28_20_13_52_sq Capital One
27 212.241.211. 27 United Kingdom 2007_Sep_28_21_47_47_dq, 2007_Sep_28_21_47_53_sq Halifax FCU
28 64.150.167.151 United States 2007_Sep_28_21_57_36_dq, 2007_Sep_28_21_58_01_sq Yahoo Mail
29 212. 70. 21. 86 Denmark 2007_Sep_28_22_12_37_dq, 2007_Sep_28_22_12_45_sq Wachovia
30 213.228.152.145 Portugal 2007_Sep_29_07_46_44_dq, 2007_Sep_29_07_46_50_sq Ebay
31 61.100. 9.211 Korea 2007_Sep_29_08_08_25_dq, 2007_Sep_29_08_08_33_sq Bank of America
32 89.110.149.177 Netherlands 2007_Sep_29_08_26_21_dq, 2007_Sep_29_08_26_28_sq Bank of America
33 82.165.119. 76 Germany 2007_Sep_29_08_40_11_dq, 2007_Sep_29_08_40_19_sq Amazon
34 87. 20. 15.141 Netherlands 2007_Sep_29_08_57_36_dq, 2007_Sep_29_08_57_42_sq Citizen’s Bank
35 219.253.140.172 Korea 2007_Oct_03_20_27_21_dq, 2007_Oct_03_20_27_35_sq Citizen’s Bank
36 216. 39. 58.235 United States 2007_Oct_03_20_39_35_dq, 2007_Oct_03_20_39_40_sq PayPal
37 78. 38.172. 3 Netherlands 2007_Oct_03_20_48_18_dq, 2007_Oct_03_20_48_29_sq Citadel FCU
38 219.253.140.172 Korea 2007_Oct_03_20_56_51_dq, 2007_Oct_03_20_56_57_sq NatWest
39 220.233. 8.140 Australia 2007_Oct_03_21_02_21_dq, 2007_Oct_03_21_02_27_sq PayPal
40 64.202.166.214 United States 2007_Oct_03_21_22_02_dq, 2007_Oct_03_21_22_16_sq Ebay
41 69. 89. 21. 81 United States 2007_Oct_03_21_29_37_dq, 2007_Oct_03_21_30_10_sq PayPal
42 64.136. 25.175 United States 2007_Oct_03_21_42_56_dq, 2007_Oct_03_21_43_07_sq Ebay
43 65.254. 74. 81 United States 2007_Oct_03_21_53_35_dq, 2007_Oct_03_21_53_44_sq PayPal
44 208.109.181. 24 United States 2007_Oct_03_22_09_34_dq, 2007_Oct_03_22_09_42_sq PayPal
45 58.140. 85.112 Australia 2007_Oct_03_22_20_23_dq, 2007_Oct_03_22_20_30_sq Citizen’s Bank
46 216. 39. 58.207 United States 2007_Oct_05_12_02_25_dq, 2007_Oct_05_12_02_29_sq PayPal
47 217. 17.228.148 Bahrain 2007_Oct_05_12_17_31_dq, 2007_Oct_05_12_17_36_sq Ebay
48 62.193.248. 62 France 2007_Oct_05_12_34_59_dq, 2007_Oct_05_12_35_15_sq BankTennesee
49 85. 25. 48. 26 Netherlands 2007_Oct_05_12_46_18_dq, 2007_Oct_05_12_46_23_sq Bank of the Cascades
50 82.204.219.231 Russia 2007_Oct_05_12_59_55_dq, 2007_Oct_05_13_00_00_sq Ebay
51 59.188. 28.202 Australia 2007_Oct_05_13_07_29_dq, 2007_Oct_05_13_07_35_sq PayPal
52 192.188. 49. 2 Ecuador 2007_Oct_05_13_20_14_dq, 2007_Oct_05_13_20_22_sq Ebay

68

www.manaraa.com

Table E.3

Referral Data

Case No Referral Generated
5 172.176.239.46 - - [05/Jul/2007:20:59:50 -0500] "GET /html_files/

2007_Jul_05_20_56_17_sq_man.html HTTP/1.1" 200 33 http://us.f622.mail.yahoo.com/ym/ShowLetter?
MsgId=1681_27011077_8238_1357_447_0&Idx=0&YY=48392&y5beta=yes&y5beta=yes&inc=25&order=down&sort=date
&pos=0&view=a&head=f&box=Inbox" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

7 71.109.252.214 - - [03/Aug/2007:00:34:52 -0500] "GET /html_files/2007_Aug_02_20_48_31_sq_man.html
HTTP/1.1" 304 - "-" "Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.3) Gecko/20070208
Mandriva/2.0.0.3-2mdv2007.1 (2007.1) Firefox/2.0.0.3
71.109.252.214 - - [03/Aug/2007:00:42:22 -0500] "GET /images/2007_Aug_02_20_48_26_dq_man.gif%5C HTTP/1.1"
404 317 "-" "Mozilla/5.0 U; Linux x86_64; en-US; rv:1.8.1.3) Gecko/20070208 Mandriva/2.0.0.3-2mdv2007.1
(2007.1) Firefox/2.0.0.3

14 172.181.233.84 - - [11/Sep/2007:02:54:24 -0500] "GET /images/2007_Sep_10_20_30_13_dq_man.gif HTTP/1.1"
200 824 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7"
172.181.233.84 - - [11/Sep/2007:02:54:39 -0500] "GET /html_files/2007_Sep_10_20_0_20_sq_man.html HTTP/1.1"
200 33 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7.12) Gecko/20050915 Firefox/1.0.7"

15 62.231.97.162 - - [12/Sep/2007:11:02:02 -0500] "GET /images/2007_Sep_10_20_43_39_dq_man.gif%5C HTTP/1.0"
404 317 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) Gecko/20070725 Firefox/2.0.0.6"

20 70.244.204.105 - - [17/Sep/2007:03:25:58 -0500] "GET /images/2007_Sep_16_16_17_54_sq_man.gif HTTP/1.1"
200 824 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.6) Gecko/20070725 Firefox/2.0.0.6"

21 89.35.62.17 - - [17/Sep/2007:20:14:46 -0500] "GET /html_files/2007_Sep_17_20_05_23_dq_man.html/ HTTP/1.1"
404 322 "-" "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)"

28 86.123.193.105 - - [29/Sep/2007:03:54:21 -0500] "GET /html_files/2007_Sep_28_21_57_36_dq_man.html HTTP/1.1"
200 33 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

86.123.193.105 - - [29/Sep/2007:03:54:38 -0500] "GET /images/2007_Sep_28_21_57_36_dq_man.gif HTTP/1.1"
200 824 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

30 172.139.141.155 - - [30/Sep/2007:12:19:56 -0500] "GET /html_files/2007_Sep_29_07_46_44_dq_man.html/
HTTP/1.1" 404 322 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"
172.139.141.155 - - [30/Sep/2007:12:19:59 -0500] "GET /images/2007_Sep_29_07_46_44_dq_man.gif/ HTTP/1.1"
404 317 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"
172.139.141.155 - - [30/Sep/2007:12:20:07 -0500] "GET /html_files/2007_Sep_29_07_46_50_sq_man.html/’
HTTP/1.1" 404 323 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

172.139.141.155 - - [30/Sep/2007:12:20:10 -0500] "GET /images/2007_Sep_29_07_46_50_sq_man.gif/’ HTTP/1.1"
404 318 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

32 89.33.93.72 - - [29/Sep/2007:08:30:21 -0500] "GET /images/2007_Sep_29_08_26_21_dq_man.gif/ HTTP/1.1"
404 317 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"
89.33.93.72 - - [29/Sep/2007:08:34:22 -0500] "GET /images/2007_Sep_29_08_26_21_dq_man.gif/ HTTP/1.1"
404 317 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

37 89.37.26.93 - - [03/Oct/2007:21:32:18 -0500] "GET /html_files/2007_Oct_03_20_48_29_sq_man.html HTTP/1.1"
200 33 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"
89.38.10.22 - - [04/Oct/2007:08:47:49 -0500] "GET /images/2007_Oct_03_20_48_18_dq_man.gif HTTP/1.1"
200 824 "http://78.38.172.3/citadel/cit.txt" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;
.NET CLR 2.0.50727)"
89.38.10.22 - - [04/Oct/2007:08:47:49 -0500] "GET /images/2007_Oct_03_20_48_29_sq_man.gif HTTP/1.1"
200 824 "http://78.38.172.3/citadel/cit.txt" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;
.NET CLR 2.0.50727)"

48 172.183.122.233 - - [05/Oct/2007:12:38:03 -0500] "GET /images/2007_Oct_05_12_34_59_dq_man.gif HTTP/1.1"
200 824 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

49 85.121.49.230 - - [05/Oct/2007:13:51:18 -0500] "GET /images/2007_Oct_05_12_46_18_dq_man.gif HTTP/1.1"
200 824 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"
85.121.49.230 - - [05/Oct/2007:13:51:20 -0500] "GET /html_files/2007_Oct_05_12_46_18_dq_man.html HTTP/1.1"
200 33 "-" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)"

51 89.122.205.16 - - [05/Oct/2007:13:17:36 -0500] "GET /images/2007_Oct_05_13_07_29_dq_man.gif HTTP/1.1"
200 824 "-" "Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"

69

www.manaraa.com

Table E.4

Phisher’s Data (1)

Case No Phishers IP Phishers Location Website Viewed
5 172.176.239. 46 United States http://us.f622.mail.yahoo.com/

ym/ShowLetter?
MsgId=1681_27011077_8238_1357_447_0_1828_-1_0
&Idx=0&YY=48392&y5beta=yes&
y5beta=yes&inc=25&order=down
&sort=date&pos=0&view=a&head=f&box=Inbox

7 71. 109.252.214 United States None
14 172.181.233. 84 United States None
15 62. 231. 97. 162 Romania None
20 70. 244.204.105 United States None
21 89. 35. 62. 17 Netherlands None
28 86. 123.193.105 Netherlands None
30 172.139.141.155 United States None
32 89. 33. 93. 72 Netherlands None
37 89. 37. 26. 93 Netherlands None

89. 38. 10. 22 Netherlands http://78.38.172.3/citadel/cit.txt
48 172.183.122.233 United States None
49 85. 121. 49. 230 Netherlands None
51 89. 122.205. 16 Netherlands None

70

www.manaraa.com

Table E.5

Phisher’s Data (2)

Case No Browser OS Turn Around
Time

5 IE Windows NT 5.1 00:03:33
7 Firefox Linux 04:46:19

14 Firefox Windows NT 5.1 06:34:11
15 Firefox Windows NT 5.1 50:18:23
20 Firefox Windows NT 5.1 11:08:04
21 IE Windows NT 5.1 00:09:23
28 IE Windows NT 5.1 05:56:45
30 IE Windows NT 5.1 28:33:12
32 IE Windows NT 5.1 00:04:00
37 IE Windows NT 5.1 00:43:49

IE Windows NT 5.1 11:59:31
48 IE Windows NT 5.1 00:03:54
49 IE Windows NT 5.1 01:05:00
51 Firefox Windows NT 5.1 00:10:07

71

	Using Web bugs and honeytokens to investigate the source of phishing attacks
	Recommended Citation

	tmp.1625165283.pdf.ewQWL

